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A ‘ Abstract P

This study concerns the effects of test multidimensionality on

recommended item bias statistics. Simulation data samples (N=1,000 each) on ' o
a 50 item test were generated using a factor model described and used by '
Drasgow and Parsons, (1983) and Parsons (1982).> Subpopulation differences on
common factorra_v_lsd..to item bias that was identified to some extent by both .,
chi~square and./;i‘tem response theory (2 paremeter logistic curve) bias

indices. The signed indices were especially effective in distinguishing

biased items from unbiased itéms. However, the use of either the signed 'p "

-~ - R

chi-square or signed IRT index in multidimensional data clearly requires ‘an -7_ o R

a8 priori knowledge of which subpopulation is at a disadvantage. This ‘rather-

unexpected finding suggests further study of the properties of signed
indices as well as a reevaluation of previous simulation research that has

appeared to support their validity.
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. A MONTE CARLO STUDY OF ITEM BIAS DETECTION

éf IN MULTIDIMENSIONAL TESTS

~ May, 1984 Draft

h /

Mental tests have had a controversial hiscary.4§Persistent differences

between racial groups on standardized aptitude test scores have suggested

the potential for unfair discrimination against members of different racial

and ethnic subpopulations. Because many occupational and educational
I
[ R

opportunities are affected byrcest scores, the issue of test bias has

P
7/

consequences for many people in our society. /-~ < 3.

The study of test bias has intensified since>the passage of the Civil
Rights Act of 1964. Arvey (1979) provides a review of much of the research
in this area. Some resesrchers have preferred to concentrate on item rather
than test bias; logically inferring that a biased test must contain biased
items. This approach allows the possibility that some items on a test are
biased while others are not.

More than a do;;ﬁ5atltistical techniques ﬁ;vefbegg proposed for
detecting bissed items.. Various techniques have been studied theoretically
and empirically with real and simulated data (see Hulin, Drasgow & Parsons,
1983; Berk, 1982).

. there appears to be a preference for techniques based on a latent trait
or item response theory (IRT) because sample estimates of population item
parameters are invariant. This advantage occurs because, when the IRT model
is valid, item parsmeters are invariant with respect to subpopulation

ability distributions. . Except for sampling error, any item should have

..............................
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identical IRT item parameter estimates (within a linear transformation) in
two or more subpopulations, regardless of ability distribution. Usually,
the specific IRT model, has been the three parameter logistic model
(Birnbaum, 1968) and has been referred to as Item Characteristic Curve-3 or
1CC-3 though all IRT models have the parameter invariance property.

The main drawback to ICC-3 is the costly estimation of model parameters
and hence bias statistics. Therefore, some previous empirical research has
focused on identifying less costly techniques that converge with IRT
methods.

Another aspect of item bias that deserves attention is the robustness
of item bias statistics when assumptions of the IRT model are violated. For
instance, the assumption of unidimensionality is likely to be violated on
tests that are developed to predict external job or educational performance
criteria. Much of the concern about unidimensionality is how to define it
operationally (McDonald, 1981). Recently, Drasgow and Parsons (1983) and

Parsons (1982) have shown that unidimensional IRT models can be applied and

interpreted in multidimensional tests. These latter studies will be

described later. However, the consequences of multidimensionality for item

bias statistics are unknown. This paper will proceed with a definition of R

item bias as well as a review of some studies that have compared the

relative effectiveness of various statistical indices of bias. Then, a

brief description of the Drasgow and Parsons (1983) methods for generating ;"” 1
-
wultidimensional data for item response simulations will be given. Finally, _*:32;

four cases of test multidimensionality and item bias will be described from

.......
...........




vhich sample data will subsequently be generated and analyzed for the

effectiveness of item bias statistics.

Defining Item Bias

Item bias is present when individuals from different subpopulations
with the same amount of a latent ability tend to have different
probabilities of responding correctly to an item. One cause of item bias
would be the use of subpopulation specific information in an item (e.g.,
information not relevant to the construct or criterion of interest). 1In
this case, members of one subpopulation have an unfair advantage and would
have a higher probability of a correct answer. Note that biasing factors
should be considered as continuous variables and not as distinguishing
characteristics between subpopulations. Clearly, not all members of one
group will have exposure to some culturally specific information, while all
members of another group will have been denied exposure to the information.
Just as mean differences on test score distributions are associated with
mean differences but overlapping distributions on primary abilities, we will
associate possible mean differences on secondary attributes with overlapping

distributions.

Item Bias Statistics

There are a variety of statistics that have been suggested for
identifying item bias. Rather than review them here, the reader is referred
to an article by Ironson and Subkoviak (1979) or books by Hulin, Drasgow and

Parsons (1983) and Beck (1982) for reviews.
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i Most previous studies have used an IRT index based on the logistic
model and a Chi~Square index based on total score intervals. The general
IRT approach will be described first. In item response theory, the

i probability of a correct response to an item is a function of one or more
item parameters and the latent ability of the examinee. In the case of
multiple choice tests, the logistic model could be the three parameter

l logistic model or:

P.() =C. + (1-ci)/(1+exp(-.in(e-bi))) (1)

vhere Pi(e) is the probability of a correct response on item ifor a given

D level of © (latent ability), a; is item discrimination, bi is item
difficulty, D is a scaling factor usually set to 1.702, and c; is the
pseudo-guessing parameter that reflects the probability of a correct

response at very low levels of €., Other possible logistic models are the

R ) |

one parameter model (Rasch, 1960; Wright, 1977) or the two parameter

O

- logistic model (Lord and Novick, 1968). Choosing among the models depends

i on the user's goals. Actual responding to multiple choice questions would
seem best described by the three parameter model above, but others have
argued that the mathematical properties of the one parameter model make it

é better in many cases. In the current study, the author chose to use the two

parameter model because it best met the demands of the current study. This

.
o feeeo -

will be elaborated upon later in this paper.

Regardless of the model chosen, item bias can be defined in a number of

ways within the IRT framework. First, one can test for the difference

MR A &

between parameters estimated in two or more subpopulations (Lord, 1980).

More common recently has been the computation of differences between two




item characteristic curves estimated in two subpopulations. Suppose that
rl(e) represents the function relating © to the probability of a correct

response for an item in Subpopulation 1 and Pz(e) represents the

l corresponding function in Subpopulation 2. Then, the area between these two
item characteristic curves could be approximated by:
301
ALGIcC = } (P.(®,) - P (8,)) x .02 (2)
s 173 2]
i=l
‘ pl(ej) is the probability of a correct response at © level j in

subpopulation 1 and Pzﬂaj) is the probability of a correct response at ©
level j in group 2. The value .02 is the width of the theta interval. Note
S that this statistic would tend to reflect an average difference between
curves with differences in different directions cancelling each other out.
This approach will be called the Algebraic Sum approach and will be referred
i to as ALGICC in this paper.
A statistic that does not average the differences between curves is the

Absolute Sum approach and is computed as:

i 301
ABSICC = ] ABS(P (6,) - P (8.)) x .02 (3)
where ABS is the absolute value .function. In this case, regardless of the

0 direction of the difference, it is still added to the bias statistic.

The chi-square approaches are conceptually similar to the IRT
approaches but without the theoretical elegance. Scheunemann (1979)
suggested that an investigator could sort examinees from each subpopulation
into five intervals based on total test score. For each subpopulation in

each interval, the proportion of correct responses is computed and compared
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to the expected proportion. These proportions are then combined over total

score intervals to cowpute a chi-square or:

5 (Py. = Pr.)2 (p,. - P..)2
ABSCHI = Z Nlj i s I 5 L + Nz.j ~2i Ti (%)
i=1 P.rj(l - P.rj) ij(1 ~ P'l'j)

where Plj represents the total correct on an item and N, is the number of

j

examinees for subpopulation 1 in total score interval j, while P,. is the

2j
proportion and sample size for subpopulation 2. PTj and NTjreptgsent the
proportion and sample size for both samples combined. 1In this case, as in
ABSICC, the statistic does not reflect direction of difference. In order to
include direction, an algebraic sum is computed as
- 2 - 2
ALGCHI = § 5.8, .(ﬁ.i_if.il. + 5N, &L_P!il. (5)
j=1 P,rj(l - P'rj) P,rj(l - P,rj)

where Sj =1 if Plj < sz, sj = -] if Plj > sz, and Sj =0if P.. = P_, and

13 2j
will be referred to as ALGCHI.

Several recent studies have compared the effectiveness of these
statistics. Rudner, Getson, and Knight (1980) compared two transformed item
difficulty approaches, three IRT methods, and two chi-square approaches in
simulated item response data sets generated from 112 different combinations
of test conditions. Item responses were generated on the basis of the three
parameter logistic model with varying degrees of bias built into the
responses from different groups. Of particular interest in this study was
the finding that the five interval signed chi-square index (ALGCHI) was
found to perform quite well. The authors concluded that "with five total

score intervals, the chi-square technique was found to be as effective as

the three parameter item characteristic curve theory technique, under most

................
..........................
..........................




of the investigated conditions" (Rudner et al., 1980, p. 8). It should be

noted that across all 112 test conditions, the three parameter logistic
index correlated .80 with generated bias. While the 5 score interval Chi-

Square index correlated .73 with generated bias. Other results for their

e
study showed that correlations with generated bias ranged from a low of .55 ' 1
for the one parsmeter IRT model to .68 for a transformed item difficulty szzlf
- - ‘,4
index. e
U . o .
Shepard, Cawilli and Averill (1981) examined the performance of various o
indices in real data. They chose a total of 16 item bias indices which were i{ff;;

variations of the transformed item difficulty method, the item discrimina-
tion method, the three parameter IRT method, the one parameter IRT method,
and the chi-square method. They studied convergence of these methods in
samples of 490 black, 551 Chicano, and 552 white pupils in the fourth,
fifth, and sixth grades. The dimensionality of the utilized Lorge-Thorndike
verbal and nonverbal tests was described on the basis of the size of the
first principal factor relative to the other factors. Variance accounted
for by the first factor ranged from 17.5% for the black sample to 19.7% for
the white sample. The size of subsequent factors dropped to about 5Z. The
authors interpreted this as supporting the contention of one general factor
in the test.

Though this study could not determine correlations with true bias
because the data were real and not based on a simulation model, a factor
analysis of correlations between the 16 indices indicated that the full
unsigned chi-square (ABSCHI) method loads on the same factor as the unsigned

ICC-3 index (ABSICC). Also, the signed ICC-3 (ALGICC) and signed chi-square




| & )

(ALGICC) methods both loaded on another factor. Based on this and other
results, the authors conclude that "it may be safe to recommend that the
signed full chi-square technique could be used as the best substitute for

the ICC-3 b differences and signed area" (Shepard et al., 1981).

Multidimensionality and Item Bias

In studies of real data (e.g., Shepard et al., 1981) observed
differences in various item statistics between groups could also be due to a
lack of fit of the model to the data. One major concern has been that the
data will most likely be multidimensional. The frequently used
unidimensional IRT models (due to availability) can be fit to
multidimensional data (Drasgow and Parsons, 1983; Reckase, 1979) but the
conceptual meaning of item bias as well as the effect on computed bias
statistics has not been given much attention. Researchers may regard
multidimensionality as "spurious" bias rather than true bias. Spurious bias
is that which tends to invalidate statistical indices of bias by including
lack-of-fit and sampling error effects. For example, Shepard et al. (1981)
state "that when parameter estimates are not linearly related across groups
this may be due to a lack of model fit rather than bias. For example, a
violation of unidimensionality assumption could be detected as bias when
group differences are not the same across traits -- an effect that is still
consistent with the interpretation of bias." Shepard et al. go on to say
"If a test were multidimensional, differential differences in group

abilities across factors would appear as bias." These authors seem to be

implying that item bias requires that the test data be very well fit by the
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unidimensional IRT model. On the other hand, Linn, Levine, Hastings, and
Wardrop (1982) consider multidimensionality a form of bias because "it can L
lead to apparent differences in .the primary ability when, in fact, there are

no such differences." Before forming research questions concerning el

multidimensionality and item bias, it is comstructive to review the recent

research on multidimensionality and IRT.

Multidimensionality and Unidimegsional IRT

f Of all possible IRT models, unidimensional IRT models have had, by far, RS

the greatest application smong IRT testing practitioners and theorists. 1In

constructing tests, practitioners are advised to retain items that conform
to the unidimensionality sssumption. Only recently have researchers begun
to investigate the implications of violating the assumption.

Reckase (1979) provided an interesting demonstration of what happens
when unidimensional IRT models are fit to tests with one or several major
factors. It appeared that a test with one large first factor could be fit
quite well in spite of the presence of other factors. On the other hand,

when two major factors were present in the test, the unidimensional model
appeared to fit only items that loaded highly on one of the two factors.

In a Monte Carlo study, Drasgow and Parsons (1983) expanded the scope
of Reckase's (1979) study by including finer gradations of the size of the
major factor. They found that for both the two and three parameter logistic R
models, the unidimensional IRT model fit test data that had a surprisingly -

high degree of heterogeneity among items, Drasgow and Parsons suggested

.........
.............
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that strict tests of unidimensionality might reject items and tests that
they had found to be estimated satisfactorily.

Parsons (1982), using the same Monte Carlo methodology, found that
under the condition of oblique factors, additional factors in the test
actually improved the fit of the IRT model. He pointed out that as the
number of correlated factors approaches the number of items, the independent
variance of each factor becomes small relative to the variance shared with
the other oblique factors. This caused the test to conform better to an IRT
model with only one dimension. Note that the above results were obtained

with oblique, not orthogonal, factors.

The Simulation Model

The basic model of multidimensional tests used in this and previous
studies (Drasgow and Parsons, 1983; Parsons, 1982) had a general latent
ability that affected all items on the test and more specific abilities that
were each limited to a subset of items on the test.

Multidimensional data structures with potentially biasing specific
ability factors can be represented by the common factor model (Thurstone,
1947) but further ttansformati;n is necessary to adequately model
. dichotomously scored item responses. The common factor model represents

continuous observed variables, x, as weighted linear cowbinations of

hypothetical common traits or factors, y, that account for covariation among
the variables and unique factors, e, that account for some variance of x but oo

not covariance. This model can be written as

X = Ay + Be (6)
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where x is a vector containing observed variables x:, A is the n-by-k matrix

of loadings on the k common factors, y is a vector containing k common

factor scores, Vi B is an n-by-n diagonal matrix with loadings along its

L

diagonal and e is a vector containing the n unique factors e.. The unique ,f;ﬁ

factors are assumed to be mutually uncorrelated and uncorrelated with the —ﬂ“i

common factors. For item response data, the x factors can be thought of as .i

unobservable response propensity variables that underlie the observed ]

dichotomous responses. Let a; ij denote the loading of the 1th response ) ;
propensity variable on the j th factor and let Bi denote the single loading

of the ith response propensity variable on the ith unique factor. 'ﬁ

Lord and Novick (1968) show that for the two parameter normal ogive IRT : 1

model in unidimensional data,
a.

8 " /——L,_la_'z —

i .

or the item discrimination parameter for item i, a;, is directly related to ;;;f

the factor loading @;. They also show that .iiﬁé

b, ~ -

or the item difficulty for item i, b;, is directly related to the z
transformation of the common item difficulty statistic (proportion of
population that gives incorrect response). Drasgow and Parsons (1983)

demonstrated that these relations hold very well in sample data generated

for a three parameter logistic IRT. Therefore, common factors and factor

scores can be used to create multidimensional simulation data.
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In the proposed study, the common factor loading wmatrices, A, are
specified to represent different characteristics of tests. First, factor
loadings will range between .40 and .80 in the A matrix. This range was
selected to represent items witg low to high a parameters. Table 1 presents
the loading matrix to be used in the present study. To achieve this loading
matrix in aptitude test data, an oblique rotation would probably be
necessary. Let & represent the matrix of first order factors after rotation
to the simple structure in Table 1. It is fundamental to the simulation
model presented here that there is one second order factor underlying the
matrix of first order common factors.

Schmid and Leiman (1957) describe a hierarchical factor model that is
based on a transformation of the k oblique first order factors to a matrix
with k+l orthogonal factors where the additional factor is the general
factor represented in terms of item response propensity variables rather
than first order factors. Basically, the larger the values in ¢, the
stronger the general factor or the less the factor differentiation.

The hierarchical factor matrix with k+l columns is used to compute item
response propensity scores, x;. To do this, a vector of k+2 factor scores
is generated to represent the éenetal factor, the k common first order
factors, and the e (unique) factor. Factor scores are generated as
independent, normal variables by the International Mathematical and
Statistical Library (IMSL) Fortran subroutine GGNPM. The mean of the factor
score distribution can be varied for different subpopulations. Factor
scores are linearly combined according to eq. (6). The continuous variable,

xi, is transformed to a dichotomous variable, u;, as follows. First, as

. et
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part of the simulation model, each item, i, is assigned a value, denoted by
Yi’ that is related to the desired proportion of examinees knowing the
correct response (p). Then the'continuous response propensity variable, x.,
is compared to A and

ui-lifxilyi

and

u, =0 if x, < Yi'
\f equals that point on the abscissa of the normal distribution (mean O,
standard deviation 1) to which the desired proportion of the population
knowing the correct response (p) is represented by the area under the curve
to the right of Yi and 1-p lies to the left of Yoo See Lord & Novick (1968,
p. 370) for further discussion of this trensformation. For the proposed
study, the y; are presented in Table 1. These values were specified to
represent items where the proportion of examinees in the majority
population, knowing the correct response to an item, are .1, .2, .3, .4, .3,
.6, .7, .8, .9. The values are equally represented among items by randomly
selecting without replacement from 50 Y; values and assigning them
sequentially to the 50 items. For any desired factor model, a simulated

examinee's item score vector, U, (ul, U,y eos un) can be obtained by

20
generating a vector, y, computing P(8) for each item and comparing this
value to 8 random number drawn from a uniform distribution in the interval
[o,1].

Ttem bias can be considered in data sets that earlier studies suggested

had tolerable multidimensionality, assuming that more extreme cases would be

identified as inappropriate by statistical procedures such as Reckase's

.......
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(1979) suggestion that the first principal component equal at least 20X of

the total variance in a test or Drasgow and Lissak's (1983) parallel

analysis method that requires more computation, but 1s more compelling than

ST
e PR
R S

a 20X rule of thumb, The model used in the current study 1s based on a
general factor (G) and two common factors (F1 and Fz) where the population

correlation matrix actually has rank 2 when communalities are in the

PR
¢

diagonal of the matrix. The representation by three factors 1s the

o

‘ L STV ¢

hierarchical factor structure that was developed by Schmid and Leiman (1957)
and subsequently used by Bumphreys (1962) in studies of human performance on

cogniti#e ability tests.

-’.'

For the current study, the two common factors can be thought of as

verbal ability and quantitative ability underlying performance on a test of

St

.
28

mathematical reasoning with word problems. In the population of
individuals, the fairly high correlations between these two factors and

therefore communality between them can be represented by the general factor

with the respective unique components being orthogonal to each other and to

the general factor. We are interested in measuring the general factor PR

although the unique portions of verbal ability and quantitative ability

affect performance on the test. In this context, items can be biased in a

number of ways and will serve as the example for describing these ways.

Suppose, for instance, that the intercorrelation between common factors
F(verbal) and F(quant) is very high. Then the unique variance attributed to
each common factor is trivial and for item parameter purposes, the test and
resulting item response data are almost unidimensional. Note, a correlation é:}:

of 1.0 between factors reduces to a single factor.

..................
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On the other hand, if the factors are only moderately correlated, then

the general factor will be smaller though still present (by definition of { fi
the model). Item parameter estimates for a unidimensional model in this ?fgé
multidimensional data will be subject to two types of error. One is ;;53
S conceptually based and derives from the fact that a single factor or ;é

dimension simply cannot capture completely the systematic effects on item
%: responses. This will be termed lack-of-fit error. The second type of error o
is sampling error. The lack of complete specification of ability by the . |

unidimensional model leads to less reliable estimates of all parameters in

the model. Analogously, estimation of item parameters is more accurate if ;L;;
true ability is known. When estimates of ability must be part of the total
parameter estimation procedure, then logically there will be more error in
item parameter estimates.

In the above cases, we could consider two subpopulations and how an
item could be biased against one subpopulation or the other. In one regard,

the model is inappropriate for both groups (due to lack-of-fit), but not

biased towards either group with regards to the other. However, larger 1:i3j

parameter estimation errors that occur because of multidimensionality could
A
L lead to large observed ICC differences than under the condition of perfect

2 model validity.

Next, consider the cases where the distribution of abilities underlying
ij the factors differs between subpopulations. The unidimensional bias indices R

might identify appropriately multidimensional items as biased as follows.

Pt )
AR
et

In the example where quantitative ability and verbal ability correlate

- . . .
. rather highly, the common variance between factors is most closely
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associated with test performance and hence the construct, mathematical
reasoning. However, if subpopulation differences in ability distributions
are present for the unique portion of verbal ability, then the lower verbal

ability group would have lower probabilities of success on the items, even

though the general factor loadings and general ability distributions are

identical.

Methods
g Simulated item response data were generated in the same manner as the
Drasgow and Parsons (1983) and Parsons (1982) studies. A factor population

factor model was specified with two oblique factors. The degree of

correlation between factors was varied. Since higher correlation implies
less factor differentiation, a factor intercorrelation of .5 was set as high
differentiation (but within tolerable limits for logistic parameter

estimation). Low differentiation will refer to a factor intercorrelation of

.81, Factor intercorrelation of .50 was the approximate lower limit found

by Drasgow and Parsons (1983) for a meaningful estimation of © in

.
B

Ly B
Lo

multidimensional data. S ﬂii;
Along with the two levels of factor differentiation, a subpopulation
difference on a minor factor (secondary ability) was either present or not. \fiij

Note that IRT parameter invariance properties have been defined for a

unidimensional © which tends to represent the general factor in
multidimensional data. Therefore, the equating of ability distributions 1"i>
between subpopulations does not directly affect known differences in

secondary ability distributions. This model implies exactly the same factor
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structure matrix for both subpopulations, with only the distribution of -
secondary ability differing between groups. These population structure
matrices appear in Table l. The oblique factor matrix is constant

throughout all four cases. Only the transformation matrix affects the size

of the loadings on the general and orthogonal common factors.
Bypothetical ability vectors were created by using the IMSL subroutine
GGNPM to generate four random factor scores from a normal distribution with

mean=0 and standard deviation of 1. One random normal deviate represents an

individual's general ability score, one deviate represented an individual's

ability on factor 1 (Fl) score, one deviate represented an individual's
ability on factor 2 (Fz) score, and one deviate represents the factor score
unique to each item. If the vector of three common factor scores is
represented by "y" and the factors that are unique to an item are
represented by "e," then a vector of response tendency scores, x, was
determined according to eq. 6.

To clarify the combinations of factor correlations and ability
distributions to be analyzed, I will nominally label low factor
differentiation and no secondary ability difference as Case 1, low factor
differentiation and mean secondary ability difference of 1.0 as Case 2, high
factor differentiation and no secondary ability difference as Case 3, and
high factor differentiation and mean secondary ability difference of 1.0 as
Case 4. To specify the true effect of these combinations on the probability
of correct answer to each item by different subpopulation, the item response
probability surface can be approximated by assuming that for any given

ability level for the general factor, the secondary abilities will have a -
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mean ability level equal to their mean. That is, the distributions are
multivariate normel and variance is homoaceda#tic. The "average" item
response surface is then reduced Eo a line and an item characteristic curve.
For example, when G=-3.0, the mean Fl score is -.5. Therefore, the correct
response propensity on item 1 in Table 1 is .021 when G=-3.0. If the mean
Fl score is +.5 (a different subpopulation), then the probability of a
correct response on item is .033 when G=-3.0. The differences between each
pair of item response surfaces (different subpopulations) were computed
between G=-3.0 and G=3.0 at intervals of .02, the difference multiplied by

.02, and summed over the 30l intervals or:
301

ALGDIF = § [(P. (G) - P, (G)) x .02] (8)
. 11 21
i=]
These differences can serve as population level item bias indices for the
true underlying item response model. Note that when there is no difference
in mean ability on either Fl or F2, there will not be any difference in the

true item response surfaces. The population level bias indices ranged from

.194 to .484 in Case 2 (low factor differentiation) and from .302 to .994 in

Case 4 (high factor differentiation). In both cases, bias was present for
the first 25 items only.

For each Case, two samples of 1,000 simulated item response vectors Tl
were generated for a total of eight samples. The sample size was chosen for

the two parameter model because earlier studies by Drasgow and Parsons

(1983) had demonstrated good parameter estimation with this sample size.
For each case, the two samples were input to LOGIST, a maximum likelihood

parameter estimation program (Wood, Wingersky, & Lord, 1976). Default

.....
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program parameters were chosen in all cases except the choice of the "c"
parameter which was fixed at zero.
All parameter estimates were equated between subpopulations before any
I‘ comparisons were made or IRT bias indices computed. Since the scaling of ©
is arbitrary and LOGIST estimates of © have a mean 0 and standard deviation
1, item parameters were rescaled within each subpopulation so that the b's

had mean = 0 and standard deviation = 1. The equating constant for each

-—ve

sample were "SD" = Standard Deviation of b's and "MN" = mean of b's after

eliminating all extreme b's (absolute value greater than 3.0). Then
- * b - MN
\ b s

and

*
a =ax SD

* *
where b and a are the transformed values.

In past studies, the computation of IRT curve differences 1s as
follows. First, because the c parameter 1s frequently poorly estimated,
I Lord (1980) has recommended that samples be combined for estimation of c's
to obtain more stable estimates. Then, a's and b's are estimated in each
sample with the c's fixed at their earlier estimated level. This procedure

suggests that bias in the ¢ parameter will not usually be detected because

STl

of sampling error. For this reason, in the current study, c's were fixed at

N R

0 for both generating item responses and estimating the parameters. This

special two parameter case of the three parameter model does reduce the

generalizability of the results, but should reduce the number of response
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vectors necessary for parameter estimation and also the cost of the
parameter estimation.

The item bias statistics can-chen be computed by comparing equated
estimated item characteristic curves. As in the true item response
functions, the estimated curves were compared in the interval of ©=-=3 to +3,
The difference between subpopulations in estimated response probabilities
vere computed at intervals of .02 and summed across the 30l intervals. Both
the algebraic sum and the sum of the absolute value of the differences were
computed. The formulas were given in equation 2 and equation 3. These
summed area differences were computed for the four cases described above.

In addition to the IRT item bias index, the method based on the
proportion of individuals in each sample who got each item correct in five

i total score intervals was also used. This 1s the full Chi-Square method
suggested by Camilli et sl. (1980) which has received some empirical support
as a reasonable approximation to the more costly IRT models. The index is

i given in equation 4 and equation 5.

Results

' The results will be presented on a case by case basis with comparisons
and generalizations made at the end.

Case 1 results concern the case where there 18 low differentiation and

1

v Tl '.‘
v no mean difference on F.. As noted in the discussion of true differences in AR
item response surfaces, there is no population level bias in Case 1. Any ]

observed large values in item bias statistics is solely due to lack of model

fit and sampling error. Table 2 presents the estimated item parameters, the

" .a’- PSR UL P AT S S AU "
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chi-square statistics, and the IRT curve differences, In general, the
estimated parameters appear similar between the two samples. Figures 1 and
2 show the relationship between eﬁuatgd 2 and b parameter estimates
respectively. Note that the estimated a parameters show more scatter than
the estimated b parameters. The correlation between a's is .93 and between
gfs is .98, Thus, at the level of item parameter estimates, there seems to
be a good deal of agreement between the two samples.

Averaging the four item bias indices for the first 25 items and then
the second 25 items in Table 2 shows that there is little difference for any
of the bias indices. For the signed chi-square index (ALGCHI), the mean is
-.300 for the first 25 items and -.636 for the second 25 items. For the
unsigned chi-square index (ABSCHI), the means are respectively 5.26 and
4.71. Por the signed IRT index (ALGICC), the means are .013 and .032
respectively. Finally, the means for the unsigned IRT aindex (ABSICC) are
.135 and .147, The distinction between first and second 25 items is only
for comparison to Cases 2 and 4 where there was a difference in the response
probability surface.

Case 2 results are for the -situation where there 1s low factor
differentiation and a mean difference in Fl. The item parameter estimates
and bias indices appear in Table 3. The correlation between equated a's is
+92 and between equated b's is .98. Figures 3 and 4 show the relationship
between the estimated a's and b's respectively.

The signed IRT index and the signed chi-square index tend to be higher
in the first 25 items (mean ALGCHI = 11.52, mean ALGICC = .086) than the

second 25 items (mean ALGCRI = -9,81, mean ALGICC = -,166), The unsigned
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. indices are both about equal in the two sets of items. For the unsigned
chi-square index, the first 25 items had an average chi-square equal to
14.46 and the second 25 items had an average chi-square of 11.48. This
Il difference is in the expected direction but both tend to be above the
critical value for chi-square. For the unsigned IRT inden, the mean was
.174 for the first 25 items and .182 for the second 25 items. Based on

these results, it appears that both the signed indices and possibly the

| &

unsigned chi-square index are effective when there 18 only slight
differentiation between factors, but actual bias due to a subpopulation mean
difference on a factor other than the general factor.

In case 3, there is a higher degree of factor differentiation and
therefore poorer model fit. However, there 1s no population level bias for

i' any of the items. Table 4 shows the item parameter estimates and bias

statistics. The correlations between estimated 2fl is .92 and between b's

RLALAPE I A A
. e

N L
o)

is .98. Figures 5 aﬁd 6 show these plots and show that there are no
.? outliers and generally better agreement for the b's.

When averaged for the two sets of 25 items, the bias statistics in
Table 4 show that there is virtually no mean difference for ALGICC (.080 vs.
‘“ .030) or for ABSICC (.149 vs. .137). For the Chi-Square indices, the mean
. differences were small for ALGCHI (.590 vs. -1.931) and somewhat larger for
ABSCHI, but in the wrong direction (3.82 vs. 5.53). Again, there is no
%“ population level bias to explain this so it can be considered sampling

error.

The final results are for Case 4 which had high factor differentiation

.

-
N
-

i\ and a mean difference of 1.0 1in Pl. Table 5 presents the estimated item
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parameters, the two ICC difference statistics, and the two chi-square
statistics for the 50 items. Note that in general, the estimated parameters
again appear somewhat similar. The comparison of the transformed a's in the
two samples is shown in Figure 7. The correlation between a's was .90. The
comparison between b's is shown in Figure 8. The correlation between b's
was .96.

The means for the two item sets on the four bias indices in Table 5
also show that both IRT indices and the signed chi-square index tend to be
higher for those items that were inherently biased (the first 25 items) than
for those items that were unbiased (the second 25 items). For ALGICC, the
means were .326 and -.076. For ALGCHI, the means were 17.68 and -16.62.

For ABSICC, the means were .340 and .187. On the other hand, for ABSCHI,
the means were 18.97 and 17.29, which does not suggest much detection
effectiveness.

Next, some analyses will be conducted to compare the results across
cases. As mentioned in the introduction, item bias statistics are used to
identify items that are biased. 1Two types of errors can be mwade 1n this
identi1fication. First, failing to identify a biased 1tem as such is false
negative error and falsely identifying a non-biased item as biased is a
false positive error. Detection at the chance level means that items are
labelled as biased in proportion to their presence in the test. That is, 1f
10 items were biased in a 50 item test and a bias index only detected at the
chance level, then for any number of items labelled as "biased", on the
average .20 (10/50) would be actually biased and .80 (40/50) would not be

biased. By rank ordering the items by each item bias statistic and notang
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the proportion of biased items identified as such at various levels of Sl
chance detection, we can gain some 1ldea of the effectiveness of each. These

analyses will only be conducted for all four cases even though only in Cases

2 and 4 was there actually any population level bias.

Figures 9, 10, 11, and 12 represent the results for the respective
cases. Note first of all that in Figures 9 and 11, all four bias indices
tend to follow the diagonal which represents chance detection. This is
appropriate because there were no population biased items and the first 25
items were only nominally labelled as such. Therefore, it appears that
none of the indices 18 over or under identifying the two sets of 25 items
when there is no inherent bias.

Looking at Figure 10, it is clear that the two signed indices (ALGCHI
and ALGICC) lie above the chance diagonal with neither one clearly superior
to the other. The unsigned chi-square index, ABSCHI, does better than
chance at low numbers of items identified, but not the higher numbers. 1In
Figure 12, the two IRT indices and Chi-Square signed index again rise above
the diagonal, showing good detection. The unsigned IRT index is slightly
below, but still better than chance. Only the unsigned chi-square index
appears to detect only at chance levels.

There is another perspective to consider on the various bias indices 1n
the four cases. If an investigator has no a priori knowledge of the group
that is disadvantaged by the items on a test, then the final sign associated
with a computed index cannot be used to aid identification. For instance,
if an item has a signed Chi-Square of 15.00 or -15.00, it will still be

labelled as biased against one group or the other. In the cases where there
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was an ability difference (Cases 2 and 4), both signed indices tend to have
larger negative values for items that are population unbiased. For chi-
square, the mean value i8s =12.72 across Cases 2 and &4 (ability difference)
as compared to -1.28 in Cases 1 and 3 (no ability difference). For ICC, the
mean value is ~.121 for an ability difference and .031 for no ability
difference. For both chi~square and ICC, these values are large enough to

cause to misidentification.

ﬁiscussion

This study examined the effects of multidimensionality and
subpopulation differences in secondary abilities on commonly used item bias
indices. The results were quite clear and suggest that in cases where the
general factor is quite strong (though the test is not unidimensional) and
where the general factor is not as strong (the test is clearly multidimen-
sional, though all common factors are correlated), both the difference
between estimated item characteristic curves and Camilli's (1930) full chi-
square method will identify items biased because of subgroup differences on
secondary ability. This study also suggests that the signed index is best
in both cases. Both conclusions assume that the investigator has a priori
knowledge of which group is at a disadvantage on the items.

The more traditional definition of item bias assumes a single latent
ability IRT model where different subpopulations have different item
characteristic curves., The current findings suggest that the unidimensional
models can approximate multidimensional data and identify bias that 1s

occurring in distributions of secondary abilities rather than item parameter
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differences., This is an important finding, because in real data, the -
unidimensional model is unlikely to be totally valid. In addition, 1f the
geﬁeral factor represents the only valid variance in observed test scores
then bias that results from differences on secondary abilites is still bias ';i
and presents a disadvantage to the members of the group that is lower

on this ability. To repeat, the notion of bias only holds 1f the secondary

ability is irrelevant to the construct or criterioﬁ of interest. -

As mentioned in the introduction, the three parameter logistic model H

has received most of the attention as a model for detecting item bias. The

current study can be viewed as a special case where the ¢ parameter is held -
constant at 0. Drasgow and Parsons (1983) had studied the effects of
multidimensionality on IRT parameter estimates and found that the two
parameter model fit slightly better than the three parameter model. -
Therefore, the current effects would likely be similar for item bias indices T
in the three parameter model. As noted in the introduction, the recommended
procedures for using the three parameter bias index includes setting the i
estimated c's to a common value for the two groups suggesting that sampling
error will swamp any true difference in ¢ parameters. Therefore, little or o
no generalizeability is lost by foregoing the estimation of the parameter in :
the current study. However, 1t is still an empirical question and worth
future consideration. o
Besides generalizing to the three parameter model, there are also many
other issues worth studying in the general area of item bias and multi- gt;
dimensionality. For instance, it would be useful to know how the ratio of

biased to unbiased items affects detection effectiveness. The current study
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used 25 items of each. A smaller number of item biased by subpopulation
differences on a secondary factor would mean that the secondary factor
itself was smaller. Therefore, the unidimensional IRT model would fit the

data better. But the current results suggests that under the null condition

of no biased items, simply increasing differentiation among factors does not
appreciably increase bias indices. That 1s, lack-of-fit error by itself

does not lead to misidentification of unbiased items as biased. .

L}
Probably the most important i1ssue to be studied 1s how to interpret the R
signed indices when the investigator doea not a priori designate one group
as disadvantaged. In multidimensional data, this would lead to correctly <
t

identifying some biased items, but also misclassifying some unbiased items.
Earlier studies have not confronted this issue either.

In summary, the current study demonstrated that item bias resulting
from subpopulation differences on a secondary ability will be detected as
such. A non-trivial degree of multidimensionality can be tolerated by both
the IRT and Chi-Square indices. Research on the interpretation of signed

bias indices is still required.
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Table 1

Orthogonal and Oblique Fopulation Structure Matrices

Orthogonal Factors Orthogonal Factors
Item Oblique Factor High Differentiation Low Differentiation
F1 F2 ] F1 F2 G Fi F2
1 0.400 0.0Q0 0.283 0.283 0.000 0.360 0.174 0,000
2 0.500 0.000 0.354 0.354 0.000 0.450 0.218 0,000
3 0.600 0,000 0.424 0.424 0,000 0.540 0.262 0,000
4 Q.700 0.000 0.495 0,495 0,000 0.630 0.305 0,000
S 0.800 0. 000 0.566 0,566 0.000 0.720 0.349 0.000
6 0.400 0.000 0.283 0.283 0.000 0.360 0.174 0.000
7 0,500 0. 000 0.354 0.334 0.000 0.450 0.218 0.000
8 0,600 Q.000 0.424 0.424 0.000 0.540 0.262 0,000
? 0,700 0.000 0.495 0.495 0,000 0.630 0.305 0.000
10 0.800 0,000 0.566 0.566 0.000 0.720 0.349 0,000
11 0,400 0. 000 0.283 0.283 0,000 0.360 0.174 0,000
12 0.500 0,000 0.354 0.354 0,000 0.450 0.218 0,000

13 0.600 0.000 0.424 0.424 0,000 0.540 0,262 0,000
14 0Q.700 0.000 0.499 0.495 0.000 0.630 0.305 0.000

15 0.800 0.000 0.566 0.566 0.000 0.720 0.349 0,000
16 0.400 0.000 0.283 0.283 0,000 0.360 0.174 0.000
17  0.500 0. 000 0.354 0.354 0.000 0.450 0.218 0.000
18 0.600 0.000 0.424 0.424 0.000 0.540 0,262 0.000
19 0.700 0.000 0.495 0.495 0.000 0.630 0.305 0,000

20 0.800 0.000 0.566 0.566 0,000 Q.720 (0.349 0.000
21 0.400 0.000 0.283 0.283 0,000 0.360 0.174 0.000
22 0.500 0.000 0.354 0.354 0.000 0.450 0.218 0.000
23 0.600 0.000 0.424 0.424 0,000 0.540 0.262 0,000
< 0.700 Q. 000 0.495 0.495 0.000 0.630 0.305 0.000
25 0.800 0. 000 0.8566 0.566 0,000 0.720 0.349 0.000
26 0.000 0.400 0.283 0.000 283 0.360 0.000 0.174
27  0.000 0. 500 0.354 0.000 0.354 0.450 0.000 0.218
2 Q.000 Q.600 0.424 0.000 0.424 0.540 . 0.000 0.262
2 0.000 0.700 0.495 *0.000 0,495 Q.630 0.000 0.305
30 0.000 0.800 0.566 0.000 0.566 0.720 0.000 0,349
31 0.000 0.400 0.283 0.000 0,283 0.360 0.000 0.174
32 0.000 0.500 0.354 0.000 0.354 0.450 0.000 0.218
33 0.000 0. 600 0.424 0.000 0.424 0.540 0.000 0,262
34 0.000 0.700 0.493 0.000 0.495 0.630 0,000 0Q.305
35 0.9000 0.800 0.966 0.000 0,566 Q.720 0.000 0.349
36 0.000 0.400 0.283 Q.000 0.283 0.360 0,000 0.174
37 0.000 0.500 0.354 0.000 0,354 0.450 0.000 0.218
38 0.000 0.600 0.424 0.000 0,424 0.540 0.000 262
3 0.000 0.700 0.495 0.000 0,495 0.630 0.000 0,305
40 0.000 0.800 0.566 0.000 0.566 0.720 0.000 0,349
41 0.000 0.400 0.283 0.000 0,283 0.360 0.000 0.174
42  G.000 0.500 0.354 0.000 0,354 0.4350 0Q.000 . 218
43 0,000 0.600 0.424 0.000 0,424 0.540 0.000 0,262

44 0.000 0.700 0.495 0.000 0.495 0.630 0.000 0,305 ]
45 0.000 0.800 0.566 0.000 0.566 0.720 0.000 0.349 S
46 0.000 0.400 0.283 0.000 0.283 0.360 0.000 0.174 o
47 0.000 0.500 0.3%4 0.000 0.354 0.450 0.000 0.218 RO
48 0.000 0.600 0.424 0.000 0.424 0.540 0.000 0.262 o
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Table 2

I Estimated ltem Parameters and Item Bias Indices for Case 1

S Item Low High ALGCHI ABRSCHI ALGICC ABSICC
W a b a b

g 1 0.376 2.299 0.315 2.977 -4.048 5.4592 -0.190 0,201
I 2 0.973 ~1.236 0.494 -1.27% -3.803Z 5.677 =-0.036 0,086
3 0.B12 -1.426 0.724 -1.440 -4.703 6.963 —-0,.052 0.061
4 1.0647 =~0.421 0.932 -0.372 -4.358 5.334 -0.057 0.067
S 1.347 Q.305 1.280 0.369 ~1.289 1.926 —-0.041 0.041
) 0.545 -2.817 0.425 -3.466 -~3.666 b.I63 0.167 0.204
- 7 0.538 1.090 0.507 1.087 2.787 4,709 0.029 0.029
& 8 0.739 ~1.376 0.794 -~1.409 7.715 11.004 -0,032 0.088
9 0.902 -0.134 1.001 0.001 ~6.997 7.14%5 -0.102 0.129
10 1,259 1.712 1.514 1.6855 -~-0,503 4.484 0.085 O.119
11 0.516 3.175 0.337 4,260 2.802 .96 -0.136 0.243
2 0,725 =-2.222 0.400 =~3.544 -~3.940 12.294 0.479 0.579
13 0.6432 Q970 0.702 0.883 1.337 2.353 0.071 0.121
[ ] 14 0.944 ~-0.734 1.142 -~0.676 3.587 4,891 -0.073 0.141

15 1,147 -0.005 1.145 -0.034 2.783 3.008 0.008 0.025
16 0.470 -1.841 0.388 ~2.228 =-0.797 4.618 0.112 0.160
17 0.703 =2.266 0.584 -~2.787 2.986 3.117 0.206 0.213
18 0.744 1.457 0.643 1.633 -~0.139 0.786 -—0.062 Q.085
pin 19 1.079 0.077 0.932 ~-0.095 10.771 10.940 0.104 0.108
| 20 1.249 -0.305 1.408 ~0,324 2,672 3.318 -0.008 0.071
21 0,467 =-3.276 0.368 -~3.714 -2.494 2.494 0.011 0.122

2 0.534 -2.873 0.548 -2.726 -0.821 3.282 -0.154 0.156

fi 2% 0.691 0.840 0.751 0.940 -4.458 4,458 -0.050 Q0. 103
i~ 24 0.836 1.311 1.020 1.260 -3.174 3.676 0.063 0.1352
- 25 1.16%9 0.002 1.299 0.012 0.300 3.286 -0.017 0.071
i 26 0.329 -1.876 0.444 -1.379 0.498 10.302 -0.249 0.397

27 0.5995 2.672 0.761 2.315 =-6.403 10.466 0.216 0.268B
28 0.899 -1.356 0.689 -1.649 0.693 3.066 0.124 Q.177
29 1.041 -0,318 0.845 -0.400 2,968 5.86%9 0.031 0.093
N T0 1.236 0.366 1.329 g.278 3.790 4.148 0.060 0.074
. 3 0,366 -3.712 0,523 -2.82 1.711 1.985 ~0.336 0.421

32 0.433 -0.075 0.439 0.104 -3.106 3.199 =0.122 0.126
33 0.682 1.550 0.762 1.429 0.270 1.818 0.107 0.145

za 0.881 0.899 1.041 0.750 3.946 4.817 0.115 0.1358
= 3= 1.635 -1.578 1.959 -1.506 -1.956 3.883 -0.112 0.112
36 0.466 -2.097 0.543 -1.705 -5.605 ?.614 ~0.268 0.298
k¥4 0.550 0. 614 0.505 0.569 1.601 1.676 0.042 0.046
38 0.709 -0.397 0.765 -0Q,470 2.556 2.556 0.024 0.Q93
39 0.929 -0.905 0.871 -0.806 ~3.703 3.817 -0.106 0.106
40 1.459 1.592 1.249 1.763 -1.108 1.696 =0.065 0.071
41 0.455 1.121 0.422 .320 -2.554 4.842 -0.084 0.084
42 0.598 2.598 0.638 2.385 1.048 2.208 C.161 0.148
4z 0.723 -2.345 0.744 -2,306 -~0.076 7.559 -0.104 0.109
44 1.184 -1.795 1.314 -1.699 1,605 6.739 ~0.134 0.140
o 45 1.195 -0.376 1.388 -0.365 1.741 2,057 ~0.030 0.089 N
- 446 0.374 -1.726 0.414 -1.337 -4.564 6.853 =0.246 0.264
. 47 0.533 1.837 0.672 1.615 -2.300 5.605 0.139 0.245
o 48 0.701 0.459 0.634 0.611 -6.268 10.019 -~0.089 0.091
- 49 0.923 =-1.255 1.039 -1.242 2.292 2,973 -0.061 0.107
. =10) 1.313 -0.032 1.161 ~0,010 ~-1.833 5.589 ~-0.025 0.038
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Table 3

Estimated Item Parameters and Item Bias Indices for Case 2

-
[
L
3

Low . High ALGCHI ABSCHI ALGICC AESICC
a b a b

1 0.458 2.215 0.380 2.017 -=-3.174 8.146 0.014 0.156

2 0.6392 -0,.770 0.561 -1.312 -5.741 8.506 0.157 0.175

3 0.710 -1.231 0.770 =-1.732 -13.929 13.92%9 0.142 0.142

l 4 0.845 -0.148 Q.902 -0.742 30,620 30.620 0.197 0.197
S 1.462 0.922 1.235 0.058 20.640 20.640 0.114 0.122

6 0.390 -3.519 0.424 -3.426 -1.850 8.668 =-0.125 0.130

7 0.467 1.602 0.524 0.993 7.276 8.870 0.174 0.184

8 0,630 -1.368 0.656 -1.886 ?.770 ?.861 0.151 0.151

9 0.865 0.238 1.000 -0,220 7.410 ?.310 0.111 0.124

r 10 1.382 2.0951 1.243 1.408 26.633 26.638 0,221 0.221
» 11 0.429 3.630 0.382 3.444 2.319 2.542 0,019 0.071

2 0.614 -2.339 0.768 =-2.296 1.910 J.9214 -0.165 0.205
13 0.720 1.145 0. 640 0.693 13.512 13.512 0.107 0.125
14 0.849 -0,3559 1.010 -1.024 17.991 17.991 0.118 0.138
15 1.257 0.282 1.356 -0.251 28.944 28B.944 0.158 0.158
16 0.465 -1.931 0.471 -2.086 -0.982 1.384 -0,063 0.063
17 0.618 -2.246 0.565 -2.869 3.029 3. 029 0.188 0.1%90
18 0.664 1.725 0.724 1.207 4.993 5.009 0.137 0.140
19 0.824 0.304 1.049 -0.230 21.165 21.165 0.158 0.189
20 1.230 Q.024 1.382 -0.597 44.414 44.414 0.213 0.213
21 0.371 -3.318 0.631 -2.660 6.335 6.535 -=0.309 0.471
0.439 -3.300 0.538 -3.125 3.057 3.897 -0.153 0.195

23 0.665 1.285 0.696 0.723 9.209 ?.209 0.169 0.169
24 0.971 1.571 1.177 0.932 18.721 19.246 0.219 0.223
25 1.010 0.259 1.240 -0.338 35.505 35.3505 0.197 Q.203
26 0.395 -1.508 0.419 -1.255 -12.430 12.6%91 -0.288 0.288
B 27 0.775 2.337 0.588 2.571 3.203 S5.435 -0,260 0.294
I 29 0.791 -1.386 0.727 -1.456 -8.428 8.428 -0.127 0.129
29 0.832 -0.337 0.997 -0.429 -6.941 7.618 -0.114 0.140
30 1.239 0.321 1.220 0.243 -12.322 12.322 -0.125 0.125
31 0.549 -2.724 0.528 -3.007 =-0.390 3.987 -0.002 Q.029
32 0.469 -0.,038 0.510 - 0.058 -15.494 15.494 -0.225 0.229

. 33 0.724 1.479 0.790 1.377 -7.035 7.036 -0.115 0.116
) 34 1.030 0.745 0.885 0.731 8.455 F.966 -0.1465 0.172
- 35 1.238 -1.819 1.729 -1.584 -7.677 7.682 -0.314 0.317

36 0.374 -2.339 0.470 -1.831 -10.416 11.569 -0.366 0.387

37 0.526 0.641 0.527 0.494 -5.138 6.181 -0.080 0.080

I8 0.694 -0.417 0.657 -0.522 -10.677 11.024 -0.106 0.107
3 39 1.044 -0.741 0.998 -0.818 -10.065 10.065 -0.123 0.123
) 40 1.254 1.665 1.799 1.475 -12.822 12.822 -0.060 Q.130

-3
"
r

41 0.323 1.602 0.385 1.423 -12.457 13.577 -0.107 0.171 .
42 0.555 2.991 0.473 3133 1.740 2.859 -0.160 0.180 T

43 0.900 =1.965 0.874 -1.987 -5.678 S5.678 -0.154 0.154 RRRS
44 1.027 -1.813 1.214 -1.658 -6.261 6.696 -—0.263 0.264 R
45 1.266 -0.383 1.507 -0,317 -36.489 36.822 -0.213 0.213
) 46 0.439 -1.277 0.403 -1.318 =6.015 6.015 =-0.144 0.130
47 0.574 1.618 0.760 1.440 -16.932 16.932 -0.083 « 201
. 48 0.632 0.497 0.729 0.533 -22.701 22,701 -0.197 Q. 203
o 49 0.932 -1.285 1.002 -1.234 -9.080 ?.161 -0.200 0.200
B 50 1.286 -0.057 1.398 -0.075 -23.223 23.223 -0.161 0.161




Table 4

Estimated Item Parameters and Item Bias Indices for Case 3

-

Item Low High ALGCHI ABSCHI ALGICC AERSICC
a b a b
1 0.428 2.092 0.418 2.201 0.426 1,362 0,010 0.028
2 0.544 -~1.138 0.486 -1.338 4,766 S.649 0.209 0.221
3 0.730 =1.423 0.697 -1.416 0.01S 1.404 0.089 0.093
4 0.890 -0,.382 Q0.996 -0.398 3.792 3.792 0.102 0.110
S 1.193 0.274 1.307 0.362 ~-1.04%5 1.528 0,022 0.041
& 0.452 -=3.295 0.363 -3.782 -0.879 1.800 0.144 0.216
7 0.482 1.042 0.481 1.177 -4.447 1.049 -0.014 0.018
8 0.783 =-1.562 0.696 -1.431 -2.049 &.701 Q0.000 0.094
Q 0.902 ~0.06%9 0.919 0.020 S5.175 b6.134 0.024 0.024

10 0.977 2.016 1.284 1.616 -0.968 b6.064 Q.338 0.343
11 0.368 3.801 0.443 3.384 -1.567 1.458 0.079 0.120
12 0.570 -2.658 0.368 -3.852 -1.,508 7.111 0.473 0.536
3 0.624 0.935 0.694 0.892 1.560 3.881 0.098 0.114
14 0.831 -0.935 0.800 =-0.780 -4.4864 4.640 -0.016 0.037
15 1.119 0.009 1,206 =-0,006 S5.901 &.537 0.097 0.098
16 0.487 -1.898 0.434 -2.056 -0.291 1.125 0.152 0.177
17 0.585 -2.619 0.684 -2.453 z.884 3.886 0.024 0.098
18 0.594 1.558 0.718 1.312 0.708 4.031 Q.210 0.233
19 0.843 -0.166 1.167 -0.055 -3.545 6.103 0.009 0.181
20 1.086 -0.367 1.111 -0.324 S.030 6.590 0.061 0.061
21 0.400 -3,615 0.531 -2.684 -1,157 1.848 -0.274 0.317
22 0.539 -2.707 0.692 -2.168 -0,606 1.758 -0.193 Q.246
23 0.696 0.808 0. 689 0.865 0.077 1.204 0.039 0.039
24 0.819 1.415 0.910 1.179 7.799 ?.005 0.234 0.234
25 1.353 =-0.046 1.314 0.006 0.191 0.763 0.050 0.051
26 0.333 -1.822 0.428 -1.272 -5.806 6.658 =0.,177 0.277
27 0.402 3.443 0.606 2,521 -0.739 3.094 0.296 0. 366
28 0.665 -1.613 0.560 -1.948 3.241 ?.111 Q.296 Q. 309
29 0.677 -0.598 0.719 =-0.438 -1.477 7.116 -0.021 0.041
30 0.942 0.234 0.938 0.438 -5.093 S.093 -0.060 0.060
=1 0.429 ~3.685 0.330 -4.217 -3.378 4.137 0.101 0.191
32 0.417 -0.220 0.491 -0.006 -1.8%0 3.074 -0.,063 0.156
33 0.548 1.637 0.622 1.543F -0.753 2,362 0.104 0.129
34 0.808 0.712 0.865 0.9211 -6.034 6,034 -0.062 0.066
35 1.033 -1.935 1.031 -1.737 -7.158 9.308 -0.037 0. 037
36 0.406 -2,269 0.463 -2.005 0.048 1.128 =-0.028 0.107
37 0.412 0.571 0,562 0.674 -5.583 6.111 -0.032 0.277
38 0,565 -0Q.638 0.651 -0.486 -3.043 4.921 -0.027 0.114
39 0.889 -0.902 0.872 -0.861 0.877 1.945 Q. 066 0.066 R
40 0.856 1.935 1.089 1.840 -3.726 3.726 0.119 0.162 N

41 0,344 1.590 0.392 1.365 1.107 1.141 0.140 0.165 i
42 0.470 3.248 0.509 3.016 -0.906 4.308 0.113 0.115 A

43 0.853 =2.206 0.6B4 -2.291 -6,372 6.526 0.134 0.194 e
44 0,773 -2.421 0.685 -2.333 6.991 7.316 0.024 0.091 o
4%  0.809 -0.564 0.932 -0.355 -2.375 10.799 -0.057 0.097 ]
46 0.309 -1.8B67 0.337 -1.522 -1.696 3I.083 -0.085 0.102 g
47  0.461 1.937 0.484 2.097 -1.589 3I.031 -0.050 0.050
48 0.587 0.318 0.673 0.378 0.694 S5.402 0.035 0.108
49 0.728 -1.%27 0.799 -1.330 1.806 9.546 -0.036 0,065
S0  0.913 -0.161 1.059 -0.01&6 -5.412 13.391 -0.015 0.080

-
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13
14
15
16
17
18
19
20

21

22

23

Estimated Item Parameters and Item Bias Indices for Case 4

Low

a
0.426
0.535
0.616
0.850
1.135
0.421
0.504
0.958
0.821
1.255
0.488
0.528
0.596
0.890
0.9464
0.3467
G.610
0.701
0.794
1.003
0.3%96
0.559
0.684
0.955
1.505
0.349
0.570
0.715
0.902
1.167
0.376
0.498
0.650
0.887
0.909
0.495
0.503
0.527
0.837
0.973
0.283
0.486
0.587
0,909
1.063
0.391
0.50%5
0.829
0.808
1.076

b
2.574
-0.767
-1.11%9
Q.003
0. 658
~3.231
1.497
-1.373
0.361
2.043%
3.393
1.455
-0.422
0.399
-2.100
-2.182
1.771
0.303
0.045
—-2.,263
1.361
1.656
0.413
-1.671
2.724
-1.412
-0.364
0.348
-3.716
0.090
1.434
0.702
-2,065
0.408
-0.657
-0.783
1.951
1.833
3.015
~2.746
~1.904
-0.373
1.994
0.404
~-1.388
0.078

Table S

High
a . b
0.404 1.829
0.530 -1.511
0.837 -1,697
0.813 -0.758
1.158 -0.023
0.478 -3.310
0.478 0.651
0,692 -1.897
0.897 -0.3%68
1.195 1.366
0.453 2.827
0.575 -2.929
0.675 0.591
0.891 ~-1.215
1.178 -~0.366
0.45% =2.604
0.634 -2.774
0,787 0.984
0.938 -0.390
1.076 =-0.739
Q.272 ~5.900
0.609 =3.204
0.716 0.472
0,895 0.801
1.250 =-0.340
0.374 -1.545
0.502 2.887
0.587 -1.740
0.693 -0.582
0.971 0.360
0.357 -4.238
0.501 -0.035
0.736 1.457
0.731 0.907
0.993 -1.880
0.352 ~2.829
0.397 O, 651
0.530 -0.646
0.739 -0.920
1.124 1.824
0.440 1,301
0.697 2.190
0.719 =2.520
0.898 -1.980
0.925 -0.385
0.299 -1.792
0.538 1.853
0.588 0.395
0.837 -1.460
0.909 -0.112

ALGCHI

10,559
-13.158
23.376
22.761
22.457
1.240
15.123
15.829
20,310
11.764
4,570
8.271
15.110
26.078
36.834
8.657
4.000
10.943
26.688
38.303
10.108
17.224
24,310
38.676
42.037
-13.020
-4,526
~7.704
-16.029
-42.447
-3.146
-27.328
-41.155
-24.808
0.989
-21.845
-24,102
-18.781
-15.673
-17.019
-7.502
-3.603
-11.204
-38.185
-9.118
-13.555
-16.430
-12.906
-12.018

ABSCHI

11.450
10.421
23.376
22.761
22.457
4,849
15.123
16.073
20,310
11.768
S.764
2.191
15.110
26.063
36.834
8.657
4.000
11.730
27 .380
38.303
10.191
17.225
24.307
X8.776
42,037
13.020
5.730
7.704
16,237
42.444
S.248
17.655
27.328
41,15%
24.808
5.493
21.845%
24,145
18.781
15.673
17.342
7.518
4.116
13.498
38.185
?.118
13.618
16.430
13.186
12.018

ALGICC

0.337
0.315
0,222
0,356
0.320
=0.044
0.419
0.186
0.344
0.349
0.243
0.208
0.4353
0.368
0.368
0.208
0.192
0.397
0.318
0.372
0.556
0.398
0. 461
0.455
0.361
-0.179
-0.115
0.025
-0.010
=0.141
=0.025
=0,05&6
-0,132
-0.255
-0, 304
0.313
-0. 251
-0.157
-0.071
-0.018
0.03C
0.283
=0.275
-0.134
-0.143
=0.007
=0.026
~-0.119
-0.124
-0.016

AEBSCHI

0.337
0.3215
0.301
0.35646
0.320
0.117
0.419
0,241
0.344
0.349
0.243
0.208
0.434
0.368
0.371
0.250
0,192
0.397
0.322
0,372
0.561
0.398
0.461
0.455
0.361
0.190
0.123
0.124
0.153
0.149
0.025
0.062
0.155
0.259
0.30%
0.384
0.290
0.157
0.086
0.090
0.436
0.366
0.298
0.13F4
0.146
0,220
0.076
0.249
0.125
0.074
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